Saturday, 22 August 2015

worksheet on real number


                     KENDRIYA  VIDYALAYA  VIJAYAPUR
Topic: Real Number
Name:                                                                                         Class:10
1.    If the HCF of 65 and 117 is expressible in the form 65 m -117,then the value of m is:
a)    4
b)    2
c)     3
d)    1
2.    If d =HCF (48,72), the value of d is:
a)    24
b)    48
c)     12
d)    72
3.    Given that HCF (26,91)=13,then LCM of (26,910 is:
a)    2366
b)    182
c)     91
d)    364
4.    If p,q are two consecutive natural numbers, then HCF (P,q) is:
a)    q
b)    p
c)     1
d)    Pq
5.    If p,q are two co-prime number.HCF (p,q) is:
a)    P
b)    q
c)     pq
d)    1
6.    If d=LCM (36,198),then the value of d is:
a)    396
b)    198
c)     36
d)    1
7.    If the HCF Of 85 and 153 is expressible in the form 85n-153, then value of n is:
a)    3
b)    2
c)     4
d)    1
8.    Given that LCM (91,26)=182,yhyen HCF (91,26) is:
a)    13
b)    26
c)     7
d)    9
9.    A rational number can be expressed as a terminating decimal if the denominator has factors
a)    2,3 or 5
b)    2 or 3
c)     3 or 5
d)    2 or 5
10. If least prime factor of a is 3 and least prime factors of b is 7:
a)    2
b)    3
c)     5
d)    11
11.If the HCF of 65 and 117 is expressible in form 65m – 117 ,then the  value                                   of m is:
a)    4
b)    2
c)     1
d)    3
12. According to Euclid’s division algorithm using Euclid’s division lemma for                   any positive integer a and b with a>b enables to find:
a)    HCF
b)    LCM
c)     Decimal expression
d)    Probability
13.If two positive integers a and b are written as a=x²y² and b=xy²; x,y are prime numbers then (a,b) is:
a)    Xy
b)    Xy
c)     x²y³
d)    x²y²


14.According to Euclid’s division algorithm HCf of any two positive integers a and  b with a>b  with a>b is obtained by appling Euclid’s division lemma to a and b to find p and q such that a=bq+r where r must satisify.
a)    1<r<b
b)    0<r<b
c)     0≤r<b
d)    0<r≤b
15.(√2-√3)(√3+√2)
a)    A real number
b)    A whole number
c)     A n irrational number
d)    A natural number
16.If n is any natural number , then which of the following expression ends with 0:
a)    (3*2)ⁿ
b)    (4*3)ⁿ
c)     (2*5)ⁿ
d)    (6*2)ⁿ
17.If two positive integersp and q can be expressed as
P=ab² and q=a³b; and a, b being prime numbers, then LCM (p,q) is
a)    ab
b)    a²b²
c)     a³b²
d)    a³b³
18.n-1 is divisible by 5, if n is of the form
a)    5K
b)    5K+1
c)     5K-1
d)    2K
19.For some integer ‘ x’ , every odd integer is of the form
a)    2x
b)    x+1
c)     x-1
d)    2x+1
20.The necessary condition on ‘n’ is irrational will be that
a)    n is a perfect sqare
b)    n is negative integer
c)     n is not a perfect square
d)    nothing can be said
21.  Which of the following is not irrational number?
a)    5-√3
b)    √5+√3
c)     4+√2
d)    5+√9
22.119²-111² is:
a)    Prime number
b)    Composite number
c)     An odd prime number
d)    An odd composite number
23.If a ,b are composite , then a²,b² are:
a)    Co-prime
b)    Not co-prime
c)     Odd number
d)    Even number
24. The decimal expansion of7/125 will terminate after how many places of decimal
a)    1
b)    2
c)     3
d)    43
25.Given that HCF(253,440)=11 and LCM(253,440)=253*R. The value of R is
a)    440
b)    40
c)     440
d)    253
26. n²-1 is divisible by 8, if n is
a)    An integer
b)    A natural number
c)     An odd integer
d)    An even integer
27.Euclid’s division lemma states that for two positive integers a and b, there exit unique integers q and r such that a=bq+r, where r must satisfy
a)    1<r<b
b)    0<r≤b
c)     0≤r<b
d)    0<r<b
28.( 2+√5)(2+√5) expansion is:
a)    A rational number
b)    A whole number
c)      An irrational number
d)    A natural number
29.Which is not an irrational number
a)    5-√3
b)    √2+√5
c)     4+√2
d)    6+√9
30.If p and q are odd positive  integers then sum of squares of these two numbers is
a)    Always odd
b)    Always even
c)     Integer
d)    Nothing can be said


No comments:

Post a Comment